🚀 Adaptive Tech Intelligence Assistant
Multi-Agent AI System with Cognitive Loops & Decision Making
🏗️ System Architecture Overview
🌐 Data Sources Layer
Research Papers • News Sites • GitHub • Patents • Conferences • Social Media • Product Launches
⬇️
🤖 AutoGen Multi-Agent Framework
Scout Agents
Monitors sources, fetches content, initial filtering
Classifier Agent
Categorizes, tags, deduplicates using LLM
Summarizer Agents
Generates personalized summaries
Trend Detector
Analyzes patterns and emerging themes
Planner Agent
Orchestrates workflows and decisions
Verifier Agent
Quality control and fact-checking
⬇️
🧠 Cognitive Loop Engine
Plan → Execute → Verify → Critique → Improve
Iterative self-improvement with feedback integration
⬇️
💾 Memory & Learning Layer
User Preferences • Source Performance • Feedback History • Model Fine-tuning Data
⬇️
📱 Delivery & Interface Layer
Dashboard • Email Digests • Slack Notifications • API Endpoints • Mobile Apps
🔄 Cognitive Loop Implementation
Example: Content Summarization Cognitive Loop
- Planner: "Summarize this AI research paper into intro, body, conclusion"
- Executor: Generates initial summaries for each section
- Verifier: Checks coverage, accuracy, key points inclusion
- Critic: "Intro too technical, body missing key algorithm details"
- Executor: Revises based on critic feedback
- Loop continues: Until quality threshold met or max iterations reached
💻 Core Code Structure
# agents/base_agent.py
from autogen import ConversableAgent
from typing import Dict, List, Any
import openai
from transformers import AutoTokenizer, AutoModelForSequenceClassification
class CognitiveAgent(ConversableAgent):
def __init__(self, name: str, llm_config: Dict, local_model_path: str = None):
super().__init__(name=name, llm_config=llm_config)
self.memory = {}
self.feedback_history = []
self.local_model = None
if local_model_path:
self.load_local_model(local_model_path)
def load_local_model(self, model_path: str):
"""Load fine-tuned local model for specific tasks"""
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.local_model = AutoModelForSequenceClassification.from_pretrained(model_path)
def cognitive_loop(self, task: Dict, max_iterations: int = 3) -> Dict:
"""Implement cognitive loop with plan-execute-verify-critique"""
result = {"iterations": [], "final_output": None}
for i in range(max_iterations):
# Plan
plan = self.plan_task(task)
# Execute
execution_result = self.execute_plan(plan)
# Verify
verification = self.verify_result(execution_result, task)
# Critique
critique = self.critique_result(execution_result, verification)
result["iterations"].append({
"iteration": i + 1,
"plan": plan,
"execution": execution_result,
"verification": verification,
"critique": critique
})
if verification["approved"] or i == max_iterations - 1:
result["final_output"] = execution_result
break
# Improve based on critique
task = self.incorporate_feedback(task, critique)
return result
# agents/scout_agent.py
class ScoutAgent(CognitiveAgent):
def __init__(self, sources_config: Dict):
super().__init__(
name="scout_agent",
llm_config={"model": "gpt-4", "temperature": 0.1}
)
self.sources = sources_config
self.content_cache = {}
async def monitor_sources(self) -> List[Dict]:
"""Continuously monitor configured sources"""
new_content = []
for source_type, configs in self.sources.items():
if source_type == "arxiv":
content = await self.fetch_arxiv_papers(configs)
elif source_type == "github":
content = await self.fetch_github_trends(configs)
elif source_type == "news":
content = await self.fetch_news_articles(configs)
new_content.extend(content)
return await self.deduplicate_content(new_content)
async def fetch_arxiv_papers(self, config: Dict) -> List[Dict]:
"""Fetch latest papers from arXiv in specified categories"""
# Implementation for arXiv API integration
pass
# agents/classifier_agent.py
class ClassifierAgent(CognitiveAgent):
def __init__(self):
super().__init__(
name="classifier_agent",
llm_config={"model": "claude-3-sonnet", "temperature": 0.2},
local_model_path="./models/tech_classifier"
)
def classify_content(self, content: Dict) -> Dict:
"""Classify and tag content using hybrid approach"""
task = {
"type": "classification",
"content": content,
"categories": ["AI", "Quantum", "Robotics", "Smart_Devices"],
"device_types": ["Humanoid", "Wearable", "Autonomous", "IoT"],
"impact_level": ["Breakthrough", "Incremental", "Application"]
}
# Use cognitive loop for complex classification
result = self.cognitive_loop(task)
# Combine remote LLM with local fine-tuned model
local_prediction = self.local_classify(content)
remote_classification = result["final_output"]
return self.merge_classifications(local_prediction, remote_classification)
def local_classify(self, content: Dict) -> Dict:
"""Use local fine-tuned model for fast, specialized classification"""
if self.local_model:
inputs = self.tokenizer(content["text"], return_tensors="pt", truncation=True)
outputs = self.local_model(**inputs)
# Process outputs and return classification
pass
return {}
# cognitive_engine.py
class CognitiveEngine:
def __init__(self):
self.agents = self.initialize_agents()
self.memory_manager = MemoryManager()
self.feedback_processor = FeedbackProcessor()
def initialize_agents(self) -> Dict:
"""Initialize all AutoGen agents"""
return {
"planner": PlannerAgent(),
"scout": ScoutAgent(sources_config=self.load_sources_config()),
"classifier": ClassifierAgent(),
"summarizer": SummarizerAgent(),
"trend_detector": TrendDetectorAgent(),
"verifier": VerifierAgent(),
"critic": CriticAgent()
}
async def run_intelligence_cycle(self) -> Dict:
"""Execute complete intelligence gathering and analysis cycle"""
# Phase 1: Data Collection
raw_content = await self.agents["scout"].monitor_sources()
# Phase 2: Classification & Processing
classified_content = []
for item in raw_content:
classification = self.agents["classifier"].classify_content(item)
classified_content.append({**item, **classification})
# Phase 3: Summarization with Cognitive Loop
summaries = await self.cognitive_summarization(classified_content)
# Phase 4: Trend Analysis
trends = self.agents["trend_detector"].analyze_trends(classified_content)
# Phase 5: Quality Assurance
verified_output = self.agents["verifier"].verify_complete_output({
"summaries": summaries,
"trends": trends,
"raw_count": len(raw_content)
})
return verified_output
async def cognitive_summarization(self, content: List[Dict]) -> Dict:
"""Implement cognitive loop for summarization"""
summarization_task = {
"content": content,
"user_preferences": self.memory_manager.get_user_preferences(),
"output_formats": ["executive", "technical", "trend_digest"]
}
# Planner breaks down the task
plan = self.agents["planner"].create_summarization_plan(summarization_task)
# Execute with cognitive loop
results = {}
for subtask in plan["subtasks"]:
result = self.agents["summarizer"].cognitive_loop(subtask, max_iterations=3)
results[subtask["id"]] = result["final_output"]
return results
🛠️ Technology Stack
🤖 AI Framework
AutoGen • LangChain
OpenAI GPT-4 • Claude
HuggingFace Transformers
🗄️ Data & Memory
PostgreSQL • Redis
Vector Database (Pinecone)
Elasticsearch
⚙️ Backend
FastAPI • Celery
Docker • Kubernetes
Apache Kafka
🌐 Frontend
React • Next.js
WebSocket • PWA
Mobile: React Native
🎯 Key Features Implementation
🔄 Adaptive Learning System
- User feedback integration with reinforcement learning
- Automatic source quality scoring and rebalancing
- Personalization engine that evolves with user preferences
- A/B testing for different summarization strategies
🧠 Advanced Cognitive Loops
- Multi-step reasoning with backtracking capabilities
- Self-correction mechanisms for improved accuracy
- Meta-learning to optimize loop parameters
- Parallel processing of independent cognitive tasks
🎛️ Hybrid AI Architecture
- Remote LLMs for general reasoning and creativity
- Local fine-tuned models for domain-specific tasks
- Edge computing for real-time processing
- Cost optimization through intelligent model routing
🚀 Implementation Phases
Phase 1: Core Foundation (Weeks 1-4)
- Set up AutoGen framework with basic agents
- Implement simple cognitive loops for summarization
- Create initial data sources integration
- Build basic classification system
Phase 2: Intelligence Layer (Weeks 5-8)
- Advanced cognitive loops with planning and verification
- Trend detection algorithms
- Memory and learning systems
- User feedback processing
Phase 3: Personalization & Optimization (Weeks 9-12)
- Local model fine-tuning pipeline
- Advanced personalization engine
- Performance optimization and scaling
- Comprehensive testing and deployment
Phase 4: Advanced Features (Weeks 13-16)
- Multi-modal content processing
- Advanced analytics and insights
- Integration with external tools and platforms
- Mobile app and advanced UI features
🎯 Ready to Transform Tech Intelligence?
This architecture provides a solid foundation for building an adaptive, self-improving AI system that keeps you ahead of the technology curve!