🚀 Adaptive Tech Intelligence Assistant

Multi-Agent AI System with Cognitive Loops & Decision Making

🏗️ System Architecture Overview

🌐 Data Sources Layer

Research Papers • News Sites • GitHub • Patents • Conferences • Social Media • Product Launches

⬇️

🤖 AutoGen Multi-Agent Framework

Scout Agents
Monitors sources, fetches content, initial filtering
Classifier Agent
Categorizes, tags, deduplicates using LLM
Summarizer Agents
Generates personalized summaries
Trend Detector
Analyzes patterns and emerging themes
Planner Agent
Orchestrates workflows and decisions
Verifier Agent
Quality control and fact-checking
⬇️

🧠 Cognitive Loop Engine

Plan → Execute → Verify → Critique → Improve
Iterative self-improvement with feedback integration
⬇️

💾 Memory & Learning Layer

User Preferences • Source Performance • Feedback History • Model Fine-tuning Data

⬇️

📱 Delivery & Interface Layer

Dashboard • Email Digests • Slack Notifications • API Endpoints • Mobile Apps

🔄 Cognitive Loop Implementation

Example: Content Summarization Cognitive Loop

  1. Planner: "Summarize this AI research paper into intro, body, conclusion"
  2. Executor: Generates initial summaries for each section
  3. Verifier: Checks coverage, accuracy, key points inclusion
  4. Critic: "Intro too technical, body missing key algorithm details"
  5. Executor: Revises based on critic feedback
  6. Loop continues: Until quality threshold met or max iterations reached

💻 Core Code Structure

# agents/base_agent.py from autogen import ConversableAgent from typing import Dict, List, Any import openai from transformers import AutoTokenizer, AutoModelForSequenceClassification class CognitiveAgent(ConversableAgent): def __init__(self, name: str, llm_config: Dict, local_model_path: str = None): super().__init__(name=name, llm_config=llm_config) self.memory = {} self.feedback_history = [] self.local_model = None if local_model_path: self.load_local_model(local_model_path) def load_local_model(self, model_path: str): """Load fine-tuned local model for specific tasks""" self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.local_model = AutoModelForSequenceClassification.from_pretrained(model_path) def cognitive_loop(self, task: Dict, max_iterations: int = 3) -> Dict: """Implement cognitive loop with plan-execute-verify-critique""" result = {"iterations": [], "final_output": None} for i in range(max_iterations): # Plan plan = self.plan_task(task) # Execute execution_result = self.execute_plan(plan) # Verify verification = self.verify_result(execution_result, task) # Critique critique = self.critique_result(execution_result, verification) result["iterations"].append({ "iteration": i + 1, "plan": plan, "execution": execution_result, "verification": verification, "critique": critique }) if verification["approved"] or i == max_iterations - 1: result["final_output"] = execution_result break # Improve based on critique task = self.incorporate_feedback(task, critique) return result
# agents/scout_agent.py class ScoutAgent(CognitiveAgent): def __init__(self, sources_config: Dict): super().__init__( name="scout_agent", llm_config={"model": "gpt-4", "temperature": 0.1} ) self.sources = sources_config self.content_cache = {} async def monitor_sources(self) -> List[Dict]: """Continuously monitor configured sources""" new_content = [] for source_type, configs in self.sources.items(): if source_type == "arxiv": content = await self.fetch_arxiv_papers(configs) elif source_type == "github": content = await self.fetch_github_trends(configs) elif source_type == "news": content = await self.fetch_news_articles(configs) new_content.extend(content) return await self.deduplicate_content(new_content) async def fetch_arxiv_papers(self, config: Dict) -> List[Dict]: """Fetch latest papers from arXiv in specified categories""" # Implementation for arXiv API integration pass
# agents/classifier_agent.py class ClassifierAgent(CognitiveAgent): def __init__(self): super().__init__( name="classifier_agent", llm_config={"model": "claude-3-sonnet", "temperature": 0.2}, local_model_path="./models/tech_classifier" ) def classify_content(self, content: Dict) -> Dict: """Classify and tag content using hybrid approach""" task = { "type": "classification", "content": content, "categories": ["AI", "Quantum", "Robotics", "Smart_Devices"], "device_types": ["Humanoid", "Wearable", "Autonomous", "IoT"], "impact_level": ["Breakthrough", "Incremental", "Application"] } # Use cognitive loop for complex classification result = self.cognitive_loop(task) # Combine remote LLM with local fine-tuned model local_prediction = self.local_classify(content) remote_classification = result["final_output"] return self.merge_classifications(local_prediction, remote_classification) def local_classify(self, content: Dict) -> Dict: """Use local fine-tuned model for fast, specialized classification""" if self.local_model: inputs = self.tokenizer(content["text"], return_tensors="pt", truncation=True) outputs = self.local_model(**inputs) # Process outputs and return classification pass return {}
# cognitive_engine.py class CognitiveEngine: def __init__(self): self.agents = self.initialize_agents() self.memory_manager = MemoryManager() self.feedback_processor = FeedbackProcessor() def initialize_agents(self) -> Dict: """Initialize all AutoGen agents""" return { "planner": PlannerAgent(), "scout": ScoutAgent(sources_config=self.load_sources_config()), "classifier": ClassifierAgent(), "summarizer": SummarizerAgent(), "trend_detector": TrendDetectorAgent(), "verifier": VerifierAgent(), "critic": CriticAgent() } async def run_intelligence_cycle(self) -> Dict: """Execute complete intelligence gathering and analysis cycle""" # Phase 1: Data Collection raw_content = await self.agents["scout"].monitor_sources() # Phase 2: Classification & Processing classified_content = [] for item in raw_content: classification = self.agents["classifier"].classify_content(item) classified_content.append({**item, **classification}) # Phase 3: Summarization with Cognitive Loop summaries = await self.cognitive_summarization(classified_content) # Phase 4: Trend Analysis trends = self.agents["trend_detector"].analyze_trends(classified_content) # Phase 5: Quality Assurance verified_output = self.agents["verifier"].verify_complete_output({ "summaries": summaries, "trends": trends, "raw_count": len(raw_content) }) return verified_output async def cognitive_summarization(self, content: List[Dict]) -> Dict: """Implement cognitive loop for summarization""" summarization_task = { "content": content, "user_preferences": self.memory_manager.get_user_preferences(), "output_formats": ["executive", "technical", "trend_digest"] } # Planner breaks down the task plan = self.agents["planner"].create_summarization_plan(summarization_task) # Execute with cognitive loop results = {} for subtask in plan["subtasks"]: result = self.agents["summarizer"].cognitive_loop(subtask, max_iterations=3) results[subtask["id"]] = result["final_output"] return results

🛠️ Technology Stack

🤖 AI Framework
AutoGen • LangChain
OpenAI GPT-4 • Claude
HuggingFace Transformers
🗄️ Data & Memory
PostgreSQL • Redis
Vector Database (Pinecone)
Elasticsearch
⚙️ Backend
FastAPI • Celery
Docker • Kubernetes
Apache Kafka
🌐 Frontend
React • Next.js
WebSocket • PWA
Mobile: React Native

🎯 Key Features Implementation

🔄 Adaptive Learning System

🧠 Advanced Cognitive Loops

🎛️ Hybrid AI Architecture

🚀 Implementation Phases

Phase 1: Core Foundation (Weeks 1-4)

Phase 2: Intelligence Layer (Weeks 5-8)

Phase 3: Personalization & Optimization (Weeks 9-12)

Phase 4: Advanced Features (Weeks 13-16)

🎯 Ready to Transform Tech Intelligence?

This architecture provides a solid foundation for building an adaptive, self-improving AI system that keeps you ahead of the technology curve!